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Abstract
The ‘Swiss Roll’ metamaterial medium is well suited to operation in the radio
frequency (RF) range, because it has a low resonant frequency and a strong
magnetic response. Two prisms of this material, one hexagonal and one square,
have been constructed and characterized both at the metamaterial’s resonant
frequency of 21.5 MHz and above it, where the effective permeability is strongly
negative. A series of spatial resonances is observed in the field patterns on the
surfaces of the prisms. Using an effective medium description, we have carried
out both analytical and numerical modelling of the electromagnetic behaviour of
the metamaterial, and find, within certain obvious limitations, extremely good
agreement between the measured and modelled results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Metamaterials [1–3] can provide an engineered response to electromagnetic radiation that
is not available from the range of naturally occurring materials. They consist of arrays of
structures in which both the individual elements and the unit cell are small compared to the
wavelength of operation; homogenization of the structures then allows them to be described
by the conventional electromagnetic constants of permittivity (ε) and permeability (μ), but
with values that could not previously be obtained. For example, materials with simultaneously
negative ε and μ can be built that have a negative refractive index [4–6], and much attention
has been given to the behaviour of such media [7].

In much of the above work, the magnetic medium has consisted of split ring resonators
(SRR) [3]. These are simple to fabricate [8] and are active in the microwave regime, providing
negative permeability typically over a bandwidth of some 10% [9]. At lower frequencies,
however, they become impractically large, and the sparseness of their packing reduces their
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Figure 1. Schematic of a Swiss Roll (a) and a photograph (b) of a typical roll used in the experiments
at 21.5 MHz. The measured real (red full line and left axis) and imaginary (blue dashed line and
right axis) parts of the permeability of a Swiss Roll as a function of frequency are shown in (c).

effectiveness. Another structure, the so-called Swiss Roll [3], is much better suited to lower-
frequency operation. This material, which is an array of elements consisting of a spiral-wound
conductor on a cylindrical mandrel (figures 1(a) and (b)), exhibits a resonant frequency in the
megahertz range (typically 10–100 MHz) and is a much stronger magnetic medium, exhibiting
negative permeability over a bandwidth that may be 40% of the resonant frequency (figure 1(c)).

Because the frequency of operation is so low, the wavelength of the electromagnetic
radiation is extremely long, and the condition that the structure should be much smaller than
a wavelength is easily met. For example, we have previously described [10–12] Swiss Roll
material operating at 21.5 MHz for which λ/a > 1000 (where a is the unit cell size and λ

is the wavelength). This should be compared to the λ/a ≈ 5 that can be achieved with the
SRR structure. A further aspect of working at low frequency is that all distances are very small
compared to the wavelength, so all measurements are made in the very near field, where the
electric and magnetic fields are essentially decoupled [13], thus simplifying both the material
requirements and the interpretation of measurements.

The material is also highly anisotropic, and the combination of a large permeability
and strong anisotropy with very long wavelength leads to exotic propagation modes. In a
previous paper [11], we showed that, on resonance, a prism of the metamaterial behaved as a
magnetic endoscope, transferring faithfully a magnetic field pattern from one side to the other.
In this paper, we concentrate on the frequency regime above resonance, where the effective
permeability is negative.

As mentioned above, there has been great interest in the behaviour of so-called negative
materials. However, the anisotropy of the present system renders it quite different from the
negative media that give rise to focussing and sub-wavelength imaging [13–18]: these require
the refractive index to be isotropic. Anisotropic or indefinite media [19, 20] have different
characteristics. There are also analogies with plasmonic systems: in the very near field the
electric and magnetic fields are equivalent, so one might expect the material to behave as a
magnetic plasma, displaying the plasmon resonances characteristic of metallic nanoparticles
in an electric field [21], with the propagation of radiation being characterized by conical
wavefronts through an anisotropic plasma [22, 23] rather than by conventional dispersion.

Accordingly, in this paper we investigate the behaviour of the highly anisotropic Swiss
Roll medium in the negative permeability regime. In previous reports [11, 12, 24, 25]
we have described the appearance of resonant field patterns on the surface of a prism of
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metamaterial; these we interpreted using the effective medium approach and achieved some
qualitative understanding of the data. In this paper, we extend these methods in an attempt to
provide a quantitative model. However, this approach has only provided a partially successful
description of the observed phenomena, so we have used numerical modelling to test the
effective medium description. In the next section we describe the development of the material
and the measurements, and summarize the experimental results. In section 3, we describe
the analytical model, and then describe how we have used a commercial numerical simulation
package, CST MicroWave Studio3, to perform the calculations. In section 4, we make a detailed
comparison of the calculated results to the measured results, and find excellent agreement
between the numerical simulation and the measurements. In the final section, we consider the
limitations of the models and review an alternative, microscopic description of a metamaterial
as an array of coupled resonators [26–30]. This approach gives good agreement with the
observed field patterns, but also has its limitations, which complement those of the effective
medium model. We conclude that the effective medium description, within certain obvious
limitations, provides an extremely accurate model of the metamaterial.

2. Experimental details

2.1. Material development

‘Swiss Rolls’ [3] (figure 1) are particularly suitable for use as metamaterial elements up to
∼100 MHz, because they have inherently large self-inductance and self-capacitance, and so a
low resonant frequency for their size. The magnetic permeability of an array of such rolls as a
function of frequency, f , is given by [11]

μxx = μyy = 1; μzz( f ) = μ′
zz + iμ′′

zz = 1 − F

(1 − f 2
0 / f 2) + iγ / f

, (1)

where F is the filling factor, f0 is the resonant frequency, and γ represents the damping or
loss. This form of the permeability naturally falls into three segments: at frequencies below the
resonance, f < f0, the real part of the permeability, μ′

zz is positive; between the resonance and
the magnetic equivalent of the plasma frequency, fp = f0/

√
(1 − F) where μ′

zz = 0, μ′
zz is

negative; and at yet higher frequency, f > fp, μ′
zz is small and positive.

We have made Swiss Rolls with a Q ∼ 60 at a resonant frequency near 21.5 MHz, by
rolling approximately 11 turns of the material Espanex® SC-18-12-00-FR4, which consists of
an adhesiveless laminate of an 18 μm copper sheet with a 12.5 μm polyimide layer, onto a
10 mm diameter Delrin® mandrel. The effective permeability of the Swiss Roll medium was
determined by inserting a roll into a long solenoid, and measuring the changes in the complex
impedance that result. Corrections for the partial volume and demagnetization were applied,
and hence the real and imaginary parts of the effective permeability were determined [11]. A
typical plot for the permeability is shown in figure 1(c). On resonance a peak value of μ′′

zz = 35
is found. Data from these measurements were used to determine the parameters in (1), giving
f0 = 21.55 MHz, γ = 0.35 and F = 0.56.

Over 300 rolls, each 50 mm long, were made, with their resonant frequencies centred on
21.5 MHz. Although nominally identical, in practice there was a distribution of frequencies
significantly greater than the width of any individual resonance, so it was necessary to tune
each roll to the correct resonant frequency. Tuning was carried out by adding a capacitively
coupled sleeve that extended 10 mm beyond the end of the roll [11]. 271 tuned rolls were

3 CST GmbH, Darmstadt, Germany.
4 Nippon Steel Chemical Company, Tokyo, Japan.

3



J. Phys.: Condens. Matter 19 (2007) 456216 M C K Wiltshire et al

Figure 2. Schematic layout of the scanning experiment. A 5 mm diameter source loop is placed
behind the slab, oriented along the axis (OZ). The detectors (a set of 5 mm loops) were scanned in
the XY plane to measure the transmitted field components Hx , Hy, Hz just above the output face.

assembled as a hexagonal array in a balsawood box to create a prism of material, which had
200 mm long diagonals and was 60 mm thick [11]. Another prism was made by packing 289
rolls into a square box of side 192 mm [25], with the square packing being maintained by
placing appropriately sized wooden spacers at the interstices between the rolls.

It should be noted that the value of the filling factor given above is the effective value that
would be obtained if the rolls could fill all space, i.e. the volume correction was just the ratio
of the measuring coil volume to the roll volume. In reality, of course, the rolls do not fill space
and we expect a lower value of F to apply. When the rolls are assembled into the prisms,
the filling factor F is reduced, by a factor of π/(2

√
3) for the hexagonal prism or π/4 for the

square prism, leading to F = 0.51 and F = 0.44, respectively.

2.2. Measurements

To measure the magnetic properties of the prisms, we placed a small magnetic dipole source (a
5 mm diameter loop) centrally on the base of the box containing the prism, some 5 mm away
from the end of the rolls, and oriented so that its axis was parallel to the axis of the Swiss Rolls.
Similar loops, oriented to receive the x-, y-, and z-components of the transmitted field, were
scanned in the XY plane, about 5 mm above the surface of the Swiss Rolls, and in the X Z
plane of the output space. A schematic of the layout is shown in figure 2.

The source and detector loops were connected to a network analyser that recorded the
signal as a function of frequency in the range 15–35 MHz, thus spanning the magnetically
active frequency range. The data were processed to provide maps of the axial field (Hz) and

the transverse (Ht) or radial (Hr =
√

H 2
x + H 2

y ) field (for the square and hexagonal prism,

respectively) in the measurement plane at each frequency.

2.3. Results

Some of the results have been presented previously [11, 12, 24, 25, 31], and they will be
discussed in detail in section 4, where they are compared with the results of the modelling.
Here, however, we give an overview of the main features, dividing the discussion into the three
frequency regions identified in section 2.1.

2.3.1. f < f0. Here, the metamaterial acts as a conventional magnetic material, and a
modified dipole field pattern is observed. We find that Hz is a maximum at the centre of the

4



J. Phys.: Condens. Matter 19 (2007) 456216 M C K Wiltshire et al

pattern and falls rapidly away from the centre, whereas Hr or Ht is low at the centre, has a
maximum at a diameter of a few millimetres, and then also falls. This variation is confined
to a central region 20–30 mm in diameter. As μ′

zz increases, this pattern is maintained, with
the central peak in Hz increasing in intensity and decreasing in width as the frequency rises
towards the resonance. On resonance, we find the narrowest peak for Hz, as was described in
our earlier work [11].

2.3.2. f > f p. Here, as for the low-frequency region, the metamaterial acts as a conventional
magnetic material, but with a small positive permeability, and a modified dipole field pattern
similar to that found for f < f0 is observed. Again, Hz is a maximum at the centre of the
pattern and falls rapidly away from the centre, whereas Hr or Ht is low at the centre, has a
maximum at a diameter of a few millimetres, and then also falls. Just above fp, the pattern
extends to cover the whole sample, but with increasing frequency it collapses towards a central
region, so that by 35 MHz it is some 40 mm in diameter.

2.3.3. f0 < f < f p. In this region, both prisms displays a sequence of field patterns that
appear to correspond to spatial resonances. These all have Hz = 0 at the periphery of the
prisms, as demanded by the boundary conditions, but their detailed structure depends on both
the shape of the prism and its permeability and hence the frequency.

Above f0, the field pattern rapidly spreads out to cover the whole face of the prism,
although the distribution is featureless, and dominated by the strong central peak. By 22.0 MHz,
some structure is apparent in the field pattern of both prisms, with a ring of higher intensity
developing near the periphery. As the frequency is increased, the pattern consolidates into this
outer ring along with further rings of higher intensity within it, reaching a maximum intensity
at 22.5 MHz for both prisms.

It is simpler to describe both the patterns and their evolution from this point by considering
the sequence as the frequency is reduced from above fp. As described above, just above fp the
pattern extends across the entire surface and the intensity increases as the frequency is reduced,
developing into a broad uniform peak at 28.5 MHz for the square prism and 29.7 MHz for the
hexagonal prism. These two frequencies correspond quite closely to the values of fp derived
from the resonant frequency f0 and the filling factor F for the two cases ( fp = 28.8 and
30.7 MHz for the square and hexagon, respectively). Below these frequencies, the overall
intensity decreases, falling particularly rapidly in the central region, albeit with a narrow central
peak which is presumably due to flux guiding through the central roll. Thus we see a ring of
low intensity forming around the central peak. This ring of minimum intensity deepens and
expands while the intensity outside it also falls until 27.5 MHz in the hexagon and 26.5 in the
square samples. The intensity both at the centre and in the outer regions then starts to rise,
with the central region broadening, until both regions reach a maximum intensity at 24.7 MHz
in both samples. Here, the square has maxima in the centre and at the four corners, whereas
the hexagon has a central maximum and an outer ring of intensity with weak maxima at the
corners of the hexagon. As the frequency is reduced further, this sequence is reproduced: the
broad central peak develops within itself a ring of low intensity which deepens and expands,
driving a second band of high intensity outwards. In the hexagon, this forms another ring,
reaching a maximum at 23.2 MHz. The process repeats again, leading to the three-ring pattern
becoming fully developed at 22.6 MHz. The case of the square is more complicated, as the rings
reform into regions of high intensity at the corners and face centres at 23.65 and 23.25 MHz,
and finally into three rings at 22.5 MHz. These patterns are shown in figure 6 (section 4.2.1)
for the square prism and figure 7 (section 4.2.2) for the hexagonal prism, respectively, where
they are compared with the results of the modelling.
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The in-plane fields vary in a similar way, and again it is simpler to describe the sequence
as the frequency is reduced from the high end. For the uniform mode, where Hz has a broad
maximum at the centre and falls to zero at the edge, the in-plane field Hr or Ht is zero at
the centre and is maximum at the periphery. When the frequency is reduced to the first ring
pattern, the in-plane field complements the axial field: whereas Hz has a central peak and a ring
of intensity in the outer half of the face, Hr is minimum at the centre, has a maximum overlying
the region of minimum axial intensity, falls to a minimum and rises again with the opposite
in-plane direction towards the periphery. As the frequency is reduced further, the ring patterns
continue to complement each other, and the overall field direction appears to rotate towards the
periphery, with an increasing number of turns as the frequency is reduced. Once again, the case
of the square prism is more complicated, but where there are ‘rings’ of axial field intensity, the
in-plane field complements them.

3. Modelling

3.1. Analytical

In our previous work [11, 12, 24, 25, 31], we treated the material as a homogeneous anisotropic
prism of material of thickness d with a magnetic response given by (1), and considered the
propagation of electromagnetic waves through the medium. By solving Maxwell’s equations
in (k, ω) space, it was shown that the dispersion relation for s-polarized radiation in the (xz)
plane was

k2
x

μzz
+ k2

z

μxx
= k2

0 = ω2

c2
0

. (2)

With μxx = 1, this becomes

k2
z = k2

0 − k2
x

μzz
. (3)

On resonance, when |μzz | → ∞, we see that (3) gives kz ≈ k0, so that all the transverse
Fourier components, kx , of the field are transported with the same wavevector: an input field
distribution is faithfully transported to the output face of the prism [11].

The eigenvectors (after removing the redundant factors) are found to be[
Bx

Bz

]
=

[ −kz

kx

]
, (4)

so we can match the fields at the boundaries between the prism and free space to obtain the
interface transmission and reflection coefficients as a function of the transverse wavevector kx .
Hence the transmission of a semi-infinite slab can be calculated in the conventional manner [32]
to obtain

Bz(r, z) = 2π

∫ ∞

0
[c+

kx
J0(kxr) exp(ikz(z − d))] dkx, (5)

where

c+
kx

=
[

cos(kzd) + 1

2

[
μxx kx

kz
− kz

μxx kx

]
sin(kzd)

]−1

(6)

is the overall transmission coefficient of semi-infinite slab as a function of kx and J0(kxr) is the
zeroth-order Bessel function of the first kind.

In the very near field, kx, kz � k0, so, away from resonance, (3) reduces to

kz ≈ ikx/
√

μzz . (7)
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Figure 3. Schematic construction showing the development of the pattern of field intensity at the
output surface of the prism. The shaded square represents the prism, and the bold circle the cone of
radiation given by equation (8). The dashed circle represents the intensity reflected internally from
the input and output faces, leading to a cone with three times the radius of the primary cone, and the
dotted circles show that intensity internally reflected from the side walls of the prism.

Thus when μ′
zz < 0 and μ′′

zz is small, kz remains approximately real for all values of kx , and the
fields propagate through the medium in a conical wavefront [22, 23] with an angle determined
by the value of μzz . Thus a point source at the input face generates a ring of intensity at the
output face whose radius is given by

r = −d Im(1/
√

μzz). (8)

To take into account the finite size of the sample, we note that there are internal reflections at
the entrance and exit surfaces, and also at the sides of the material. For the square prism, this
can be treated by considering a unit cell with periodic boundary conditions and folding all the
higher-order components back into the central zone (see figure 3) to deduce the total field. We
combine this with the expressions (5) and (6) for the transmission coefficient to calculate the
output pattern, which should consist of a central ring whose radius is given by (8) along with
additional structure arising from internal reflections.

3.2. Numerical

We carried out numerical simulations using the transient solver of CST MicroWave Studio®

(see footnote 3). Here, a short pulse of radiation is launched into the model, and the evolution
of the field distribution is calculated as a function of time. This is then Fourier transformed
to provide the frequency response of the system. We modelled the metamaterial prism as a
slab of uniform material having an anisotropic, frequency-dispersive permeability. Here, the
transverse permeabilities were set to unity, and the axial permeability was described using the
Lorentzian dispersion in MicroWave Studio (MWS), which sets

μ( f ) = μs + (μs − μ∞) f 2
0

( f 2
0 − f 2) − i f γ

, (9)
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where μs and μ∞ are respectively the low-frequency and high-frequency limiting values of the
permeability, f0 is the resonant frequency and γ is the damping. Comparing this with (1), we
see that our metamaterial requires μs = 1 and μ∞ = 1 − F ; the resonant frequency and the
damping have the same values in both equations.

As discussed in section 2.1, F = 0.51 and F = 0.44 for the hexagonal and square
prisms respectively, so we require μ∞ = 0.49 or 0.56. However, in-built constraints in MWS
prevented us from using these parameters. We retained the measured resonant frequency and
damping, kept μ∞ = 1, and selected a static permeability, μs , that gave μ′

zz = 0 at the correct
frequency. However, it was impossible to achieve an overall match between the measured and
modelled permeabilities, and so comparisons could not be based on the absolute frequency
but had to be made by identifying the field patterns and their development as a function of
frequency.

The source of the magnetic field was modelled as a 5 mm diameter wire loop placed in
the space behind the slab and excited by a current source in the loop. The background to the
model was vacuum, and so-called ‘open’ boundaries (i.e. perfectly matched layers) were placed
approximately λ/8 away from the region of interest; this distance was set by the software itself.
This led to an extremely large model, but the gridding was required to be fine only across the
metamaterial region; away from the material, quite a coarse grid was used. Because the system
is highly resonant, the convergence criteria in MWS did not always give consistent results.
Therefore, following the excitation pulse of ∼355 ns duration, the calculation was allowed to
evolve until no further signal was observed on probe monitors placed in the output space. This
took typically 15 pulse widths or about 5500 ns with a run time of typically 30 h on a PC with
a 3 GHz processor. Tests were run with different calculation times to ensure that this choice
was suitable for the range of models under consideration. The resulting magnetic fields were
monitored in a plane 5 mm in front of the slab, as was done in the measurements, and the results
were recorded at 0.1 MHz intervals in the range 20–30 MHz. The central region (±100 mm in
both X and Y directions) was stored for further processing and comparison with the measured
data.

4. Comparison of measured and modelled results

4.1. On resonance

We make the first comparison between the modelled and measured results at the resonant
frequency of the individual elements, f0, when |μ| becomes large. Then, as shown in
section 3.2, the material acts as a coherent face-plate for magnetic flux, and transfers an input
field pattern from one side of the prism to the other. This behaviour was observed in our early
measurements [11], and was discussed there in terms of the analytical model. Here, we consider
whether the numerical model supports our interpretation of the data. In figures 4(a) and (b),
we show the measured axial (Hz) field patterns, both in the plane containing the axis (the X Z
plane) and in the plane of the output face (the XY plane; see figure 2), that arise from a 5 mm
diameter source placed behind the prism. The observed pattern corresponds to that of a dipole
lying on the output face—notice the diagonal band of low intensity, characteristic of a dipole
field. In this figure, and in the following three figures, blue regions represent low field intensity
whereas the red regions denote high intensity. The numerical results are shown in figures 4(c)
and (d), for the same planes as for the data, and not only show that an excellent match is
obtained in the output space but also reveal the field in the input space and the propagation
of the field through the prism. These figures demonstrate convincingly that the face-plate
behaviour is obtained in a homogeneous (but strongly anisotropic) effective medium, and is
not just due to guiding through the individual Swiss Rolls.

8
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(e)

(a) (b)

(c) (d)

Figure 4. Axial magnetic field (Hz) patterns from the hexagonal prism on resonance: (a) measured
intensity (dB) in the X Z plane, and (b) amplitude in the XY plane, 5 mm above the prism;
(c) modelled intensity (dB) in the X Z plane, showing the jet of flux propagating through the
material, and (d) amplitude in the XY plane, 5 mm from the prism. (e) Comparison of measured
and calculated profiles: the points are measured data with the dotted line being a guide to the eye,
the dashed line is the analytical profile and the full line is the profile from the numerical calculation.
The measured intensity without the prism is about −60 dB [11] (not shown).

Moreover, in figure 4(e), we plot a comparison of the measured profile (points) with the
analytic calculation based on the formalism of section 3.1 that we reported previously [11]
(dashed line) and the profile obtained from the present numerical calculation (full line). The
detailed structure in the measured data arises because, in this measurement, we used a 3 mm
diameter probe and sampled at 2 mm steps, thus ensuring that the discrete rolls could be
resolved. We see that flux is trapped to some extent inside the individual elements, and
clearly this effect cannot be represented in an effective medium approximation. Therefore, the
comparison should be made between the envelope of the data points and the calculated profiles.
It is clear that the agreement between the two calculated profiles is very good over a wide
intensity range (note the logarithmic scale), and both are accurate envelopes for the measured
points, so that an anisotropic effective medium model does indeed represent the observed fields
correctly.

4.2. Above resonance

As pointed out above, MWS cannot accept the fitted parameters for the permeability in its
Lorentzian dispersion model, so the permeability in the model at any given frequency is not the
same as that in the experiment. Therefore, rather than being able to make comparisons at the
specific, measured frequency points, we have had to consider the sequence of calculated field
patterns as a function of frequency, and how one pattern evolves into the next. The first pattern
considered in the negative permeability region above the resonant frequency was that found at
24.7 MHz in the square prism. This pattern has high intensity in the central region and in the
corners of the square, and is shown in figure 5(a).

9
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a b c d

Figure 5. Comparison of Hz field distributions observed 5 mm above the output face of the square
prism at 24.7 MHz. (a) The measured result, (b) that from the analytical model, and (c) the
numerical simulation, all using a 5 mm diameter source placed 5 mm behind the input face. (d) The
result for the numerical model using a plane wave excitation.

The first simulations were made using the same physical layout as the experiment, with the
source placed 5 mm behind the slab and the fields monitored 5 mm in front of it. The results
on resonance in figure 4 were obtained in this configuration. In figures 5(b) and (c), we show
the results of the analytical calculation and the numerical simulation for this configuration that
correspond best to the data at 24.7 MHz. We note first that the two calculated distributions
are quite similar, although the numerical model shows rather more structure than the analytical
calculation. However, it is clear from these plots that the calculated patterns contain much finer
detail than was actually observed: the measured features were much larger and more diffuse
than the calculated ones.

A further observation is that when a plane wave source is used to illuminate the sample
in the numerical simulation, with the magnetic field aligned along OZ and propagation along
OX, we obtain the distribution shown in figure 5(d). This gives very good agreement with the
measured data.

In part, this difference is a consequence of the finite size of the elements in the
metamaterial: no component of the field pattern with a spatial wavelength smaller than the
size of an element can be sustained, so there is an effective cut-off at high transverse spatial
frequency or wavevector. Moreover, the finite size of the prism itself leads to a minimum
for the transverse wavevector. Thus, for accurate modelling, we need to restrict the range of
wavevector. We have implemented this in the analytical model with some success, and the
results are discussed in the following section. However, it not possible to impose such limits
directly in the numerical model, so we have approximated the effect of the upper limit on
wavevector by moving the source further away from the prism, thus making the incident field
pattern more diffuse and reducing the high spatial frequency components of the input field.
When the source is placed 20 mm behind the prism, excellent agreement is obtained with
experiment, both for the individual patterns and for their evolution from one to another as a
function of frequency. In the following two sections, we discuss the results using this model
setup for the two prisms.

4.2.1. The square prism. The measured results for the square prism are shown in the central
column of figure 6, once again starting at the highest frequency. As pointed out above, in the
negative μz regime, the boundary conditions at the edges of the prism require Hz = 0. At
high frequency (28.5 MHz), we observe a uniform mode (with Hz = 0 at the edges). As the
frequency is reduced, all intensity fades until the next resonance at 24.7 MHz, discussed above,
is approached, when intensity grows both at the centre of the square and at the corners. As the
next resonance is approached, the central region grows along the axes, until at 23.75 MHz a
pattern of nine high-intensity spots is seen. Increasingly complicated patterns then evolve as the
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Analytical model Experimental data Numerical model 

(a)

(b)

(c)

(d)

(e)

Figure 6. Comparison of (centre column) the field patterns observed 5 mm from the exit face of the
square prism at (a) 28.50 MHz, (b) 24.70 MHz, (c) 23.65 MHz, (d) 23.25 MHz, and (e) 22.50 MHz
with the patterns calculated using the analytical model (left column) and the numerical model (right
column).

frequency is reduced towards f0; examples are shown in figure 6 for 23.25 and 22.50 MHz. The
task of the simulation is to reproduce not only the resonant patterns, but also the progression
from one to another. We also note in figure 6 that the measured patterns have a granularity:
this is due to the size of the individual elements of the metamaterial and we cannot expect any
calculation based on an effective medium model to reproduce this.
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24.7 MHz29.7 MHz

23.2 MHz 22.6 MHz

Figure 7. Comparison of measured and modelled resonant field patterns for the hexagonal prism
sample. In each frequency group, the left frames are the measured patterns and the right frames are
calculated. The upper pair of frames in each case shows the axial field amplitude, |Hz|, whereas the
lower pair shows the radial field amplitude, |Hrad|, whose direction is shown by the arrows.

In the left-hand column of figure 6, we show the field patterns calculated using the
analytical theory of section 3.2, along with the periodic boundary conditions discussed there,
implemented for the situation when the source was taken to be 20 mm behind the rear face
of the prism and the wavevector sum in (5) truncated at a spatial frequency corresponding
to the roll diameter. First, we note that this model does not produce a result at the highest
frequency. Here μz ≈ 0, so there is an extremely large mismatch between the medium and the
vacuum, and hence little field penetration. Thus the predicted transmission in this frequency
region is essentially zero. The correlation between the other calculated and measured patterns
is better than when the source lies 5 mm behind the prism, and we can clearly see that the basic
structure of the field patterns is correctly produced. However, the agreement is not particularly
good: overall, the features are rather smaller and sharper than those observed.
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In the right-hand column are the results of the numerical simulation, again for the case
when the source is 20 mm behind the prism. Here we see a much improved agreement between
the model and the measured data: not only is the basic structure of the patterns given correctly,
but also the size and shape of the high-intensity regions are well described. This model is able
to calculate the correct pattern at the high-frequency end (figure 6(a), 28.5 MHz). Between
the two highest resonances, however, some extra structure was calculated, except when a plane
wave source was used. At the lower frequencies, below 25 MHz, the agreement between the
measured and calculated field patterns is extremely good, and the whole progression from
one pattern to another down and through the resonance frequency is correctly described by
the numerical simulation. The results are shown for 24.7, 23.65, 23.25 and 22.50 MHz as
figures 6(b)–(d), respectively.

4.2.2. The hexagonal prism. Secondly, we consider the data for the hexagonal prism, and
take into account both the axial and radial fields. As we have described previously [12], at the
highest frequency, 29.7 MHz, we observe a simple drum-head-like resonance, with Hz being
maximum at the centre and zero at the edges of the prism. Conversely, the radial field is zero
at the centre and maximum at the edges, and points uniformly outwards. As the frequency is
reduced, the intensity fades until the next resonance at 24.7 MHz, where we observe a central
peak and a ring of intensity in which the sign of Hz is reversed. In the radial field, we see
the complementary pattern. As the frequency is further reduced, additional ‘rings’ of intensity,
modulated by the hexagonal symmetry of the prism, appear. The results are shown in figure 7
as the left-hand frames in each set of data.

The right-hand frames of the data sets in figure 7 show the results of the numerical
simulation, again with the source placed 20 mm behind the prism, as described in the previous
section. It is clear that the agreement between the measured patterns and the simulated results
is extremely good, both for the axial and radial field components. As for the square prism, in
the high-frequency regime between the first two resonances (at 29.7 and 24.7) the numerical
simulation shows additional structure that is not observed in the measurements. As pointed
out above, this region is better described by simulations using a plane wave source rather
than a finite-sized loop source. As the frequency is reduced towards the resonance of the
individual rolls, however, the sequence of patterns and the progression from one to another
is well described by the numerical simulation.

5. Discussion

We have shown above that a numerical simulation based on an effective medium description
of a magnetic metamaterial is able to give a very good description of the observed spatial
resonances in the field patterns around the material samples. However, this was achieved by
modifying the actual experimental layout: with the field source in its correct position, additional
structure was present in the calculations that did not appear in the measurements. Indeed, at
the high-frequency end of the negative permeability regime, good results were obtained using a
model excited by a plane wave rather than a small loop source. This indicated that high spatial
frequency components arising from the finite size of the source continued to be present in the
calculation, although they were not observed in the measurements. Clearly, spatial frequencies
greater than that set by the unit cell cannot be sustained in the real material, but are present in
the model—there is no cutoff mechanism in an effective medium model. To some extent,
this restriction on high spatial frequencies can be simulated by moving the source further
away from the sample, to a distance several times the source diameter, so that the highest
spatial components are attenuated before impinging on the material. As shown above, this
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approach has been very successful in the lower-frequency regime, but less so between the first
two resonances; here the plane wave excitation (i.e. launching a uniform magnetic field in the
model) gives the best result.

We have also considered an analytical approach within the effective medium framework,
similar to that outlined in [11]. There, it was shown that s-polarized radiation whose wavevector
lies in the xz plane propagates through an anisotropic magnetic medium according to the
relation (2). This model describes the behaviour on resonance well, but predicts finer and
more detailed structure that that observed at higher frequency. Indeed, there is good agreement
between the analytical models and the numerical model when the source is kept small and
close to the material. Our attempts to impose a spatial frequency cutoff in the analytical
models (for example, by constraining the upper limit of integration in (5)) have been partially
successful. The pattern details are indeed smeared out, and the characteristic features of the
spatial resonances are reproduced, but the details of the patterns are not correct. Nevertheless,
this simple model gives a surprisingly good account of the experiments.

In [12] we analysed these patterns by appealing to the dispersion relation (7) that relates the
propagation wavevectors kx and kz via the permeability μ. We argued that the high-frequency
resonance was characteristic of μ = 0, and the more complex patterns at lower frequency
arose when the combination of the wavevectors and permeability were such as to permit the
prism to resonate. By determining the appropriate wavevectors from the dimensions of the
prism and the resonant patterns, and deriving the permeability using (7), we calculated that the
effective packing fraction F was very close to that for the hexagonal structure. This, combined
with the consistency of the field patterns, reassured us that the patterns did indeed arise from
resonances of the prism rather than being due to specific values of μ, such as μ = −1. The
present simulations reinforce that view: the patterns that are observed in the measurements
arise when the fields inside the prism are strongest, i.e. at a resonance, and the axial and radial
field patterns complement each other, showing that the field direction in the resonances rotates
from the centre to the periphery, with an increasing number of turns as the frequency is reduced.

An alternate description of the Swiss Roll medium can be built up by considering the ma-
terial to consist of an array of coupled resonators (the individual rolls), with magnetic coupling
between each roll [29]. It is then possible to write the currents in each of the N elements,
denoted as a vector I of length N , as a response to an exciting voltage V through the N × N
impedance matrix Z , whose elements are the self- and mutual-inductances of the elements, the
coupling coefficients above. This has been carried out by Zhuromskyy and co-workers [30], us-
ing data extracted from a linear array of these rolls [29], and the response of a hexagonal prism
as a function of frequency was calculated. This calculation showed very similar features to
those described here. In particular, as the frequency is reduced from well above f0, a first, uni-
form resonance is predicted. As the frequency is reduced, the intensity falls, rising again at the
next resonance; this has the central peak and a further ring of intensity, as seen in our hexagonal
prism at 24.7 MHz. There is no structure in the pattern between these two resonances. Sim-
ilarly, no extra structure is predicted between here and the next resonance, corresponding to
the measured pattern at 23.2 MHz. Thereafter, however, much detailed structure is predicted:
indeed, this persists below f0, and this is not observed experimentally. In addition, we note that
the calculated resonant frequencies, f/ f0, are different from those observed; this is surprising
because the fully populated N × N impedance matrix was used in the calculation, and the
coupling coefficients, taken from [29], were measured for the same Swiss Rolls as used here.

Thus, the situation regarding additional structure is reversed: whereas in the effective
medium model this appears at the higher frequencies and the behaviour near f0 is correctly
predicted, in the coupled resonator approach the reverse is true. It is also interesting to note
that a calculation of the present effective medium model, but using a plane wave excitation

14



J. Phys.: Condens. Matter 19 (2007) 456216 M C K Wiltshire et al

Figure 8. Dispersion curves of frequency
versus kz plotted for kx = 5π (red full line)
and 12π (blue dotted line), corresponding to
the two limiting values imposed by the roll
diameter and the sample size. The dashed line
corresponds to the prism thickness being half
a wavelength.

rather than a current loop, contains just the resonances at high frequency without the additional
structure, but fails near f0.

A possible explanation for these observation may be seen by considering the dispersion
relation (3), which is plotted over the frequency region of interest as figure 8 for two values
of the transverse wavevector, kx , corresponding to the prism size and to the element size. This
figure shows that, at a given frequency, a higher kx demands higher kz . However, one might
expect that the effective medium models would not be accurate for very large kz , especially
for those values corresponding to wavelengths much smaller than the thickness of the prism,
i.e. kz ∼ 50 or π/0.06, shown as the dashed vertical line in figure 8.

Although the effective medium can certainly support large kz , the actual Swiss Rolls
probably cannot: no variations in amplitude or phase were observed along the length of
200 mm long rolls excited by a loop at one end, as was done in [10]. The impact of such a
restriction is that the effective medium model is good for the lower kz , and hence for the lower
frequencies, but breaks down at higher frequencies when there is no mechanism within the
model to restrict the kz and hence the kx . The converse appears to be the case for the coupled
resonator description.

We see therefore that neither model is perfect. Both predict the existence of resonant field
patterns, and correctly calculate the form of those patterns. The evolution of the behaviour with
frequency is accompanied in the models by additional structure not observed in practice. In the
effective medium model, this occurs at high frequency, and shows that the effect of high spatial
frequencies when μ is modest but negative is overestimated. However, we emphasize that the
sequence of resonances between 24.7 MHz and f0 = 21.6 MHz is correctly predicted by the
effective medium model in both samples, as is the progression from one resonant pattern to the
next. Accordingly, we feel that the use of an effective medium picture is justified, provided that
the spatial frequency defined by the size of the metamaterial structure is not approached.

Finally, because the wavelength of electromagnetic radiation at these frequencies is so long
compared to any length scale in the experiment, we expect the electric and magnetic fields to
be essentially independent of one another. Accordingly, an equivalent dielectric model, with
the same dispersion parameters but with an electric dipole excitation, should show the same
results. This situation, of course, corresponds to the better known plasmon resonances, but on
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an interface that lies between a dielectric (ε positive) and a metal (ε negative). We have carried
out the MWS calculations for such a system, and indeed find that the results for the electric field
are the same as those for the magnetic system. Accordingly, we can think of the resonances
that we measure in the field patterns as being due to magnetic plasmons [33].

In conclusion, we have measured and modelled the field patterns around prisms of
magnetic metamaterial; these are a series of resonances, increasing in complexity as the
fundamental frequency f0 of the metamaterial elements is approached from above. Provided
that the excitation in the model is restricted to low spatial frequencies, excellent agreement
between experiment and the effective medium description is obtained.
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